Symplectic Mapping Class Groups of Some Stein and Rational Surfaces
نویسنده
چکیده
In this paper we compute the homotopy groups of the symplectomorphism groups of the 3-, 4and 5-point blow-ups of the projective plane (considered as monotone symplectic Del Pezzo surfaces). Along the way, we need to compute the homotopy groups of the compactly supported symplectomorphism groups of the cotangent bundle of RP and of C∗×C. We also make progress in the case of the An-Milnor fibres: here we can show that the (compactly supported) Hamiltonian group is contractible and that the symplectic mapping class group embeds in the braid group on n-strands.
منابع مشابه
Lagrangian spheres, symplectic surfaces and the symplectic mapping class group
Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1, we find embedded symplectic surfaces intersecting it minimally. When the Kodaira dimension κ of (M,ω) is −∞, this minimal intersection property turns out to be very powerful for both the uniqueness and existence problems of Lagrangian spheres. On the uniqueness side, for a symplectic rational manifold and any class which is...
متن کاملSymplectomorphism Groups and Almost Complex Structures
This paper studies groups of symplectomorphisms of ruled surfaces M for symplectic forms with varying cohomology class. This cohomology class is characterised by the ratio μ of the size of the base to that of the fiber. By considering appropriate spaces of almost complex structures, we investigate how the topological type of these groups changes as μ increases. If the base is a sphere, this cha...
متن کاملSymplectic Rational Blowdowns
We prove that the rational blowdown, a surgery on smooth 4-manifolds introduced by Fintushel and Stern, can be performed in the symplectic category. As a consequence, interesting families of smooth 4-manifolds, including the exotic K3 surfaces of Gompf and Mrowka, admit symplectic structures. A basic problem in symplectic topology is to understand what smooth manifolds admit a symplectic struct...
متن کاملBounded Cohomology and Non-uniform Perfection of Mapping Class Groups
Using the existence of certain symplectic submanifolds in symplectic 4-manifolds, we prove an estimate from above for the number of singular fibers with separating vanishing cycles in minimal Lefschetz fibrations over surfaces of positive genus. This estimate is then used to deduce that mapping class groups are not uniformly perfect, and that the map from their second bounded cohomology to ordi...
متن کاملOn symplectic 4-manifolds and contact 5-manifolds
In this thesis we prove some results on symplectic structures on 4-dimensional manifolds and contact structures on 5-dimensional manifolds. We begin by discussing the relation between holomorphic and symplectic minimality for Kähler surfaces and the irreducibility of minimal simply-connected symplectic 4-manifolds under connected sum. We also prove a result on the conformal systoles of symplect...
متن کامل